Pengukuran, Besaran, dan Dimensi  

Posted by: Unknown



PENGUKURAN
Dalam ilmu fisika pengukuran dapat dilakukan pada sesuatu yang terdifinisi dengan jelas.
misalnya : pengukuran panjang, massa, temperatur, dll.
Pengukuran dapat dilakukan dengan dua cara yaitu :
1. Pengukuran Langsung 
Dengan sesuatu alat ukur langsung memberikan hasil pengukuran 
contoh : pengukuran lebar meja
2. Pengukuran tak langsung :
Dengan suatu cara dan perhitungan pengukuran ini barulah memberikan hasilnya.
contoh : pengukuran benda-benda kuno.



SATUAN
Pengukuran selalu dibuat relatif terhadap satuan tertentu. 
Sistim satuan yang dipakai sekarang adalah sistim Internasional yang disingkat dengan SI (dari bahasa perancis Le Systeme International D’Unites ) dan sistim Inggris.
Dalam SI terdapat 2 sistim satuan yaitu : 
sistim MKS(meter-kilo-sekon) dan sistim CGS(centi-gram-sekon) 

Sistim      Panjang     Massa      Waktu
MKS          m               kg                 s
CGS          cm               g                  s 

BESARAN
Pengertian Besaran
Besaran adalah segala sesuatu yang dapat diukur atau dihitung, dinyatakan dengan angka dan mempunyai satuan.
Dari pengertian ini dapat diartikan bahwa sesuatu itu dapat dikatakan sebagai besaran harus mempunyai 3 syarat yaitu
1.      dapat diukur atau dihitung
2.      dapat dinyatakan dengan angka-angka atau mempunyai nilai
3.      mempunyai satuan
Bila ada satu saja dari syarat tersebut diatas tidak dipenuhi maka sesuatu itu tidak dapat dikatakan sebagai besaran.
Besaran berdasarkan cara memperolehnya dapat dikelompokkan menjadi 2 macam yaitu :
1.      Besaran Fisika yaitu besaran yang diperoleh dari pengukuran. Karena diperoleh dari pengukuran maka harus ada alat ukurnya. Sebagai contoh adalah massa. Massa merupakan besaran fisika karena massa dapat diukur dengan menggunakan neraca.
2.      Besaran non Fisika yaitu besaran yang diperoleh dari penghitungan. Dalam hal ini tidak diperlukan alat ukur tetapi alat hitung sebagai misal kalkulator. Contoh besaran non fisika adalah Jumlah.
Besaran Fisika sendiri dibagi menjadi 2:
1.      Besaran Pokok adalah besaran yang ditentukan lebih dulu berdasarkan kesepatan para ahli fisika. Besaran pokok yang paling umum ada 7 macam yaitu Panjang (m), Massa (kg), Waktu (s), Suhu (K), Kuat Arus Listrik (A), Intensitas Cahaya (cd), dan Jumlah Zat (mol). Besaran pokok mempunyai ciri khusus antara lain diperoleh dari pengukuran langsung, mempunyai satu satuan (tidak satuan ganda), dan ditetapkan terlebih dahulu.
2.      Besaran Turunan adalah besaran yang diturunkan dari besaran pokok. Besaran ini ada banyak macamnya sebagai contoh gaya (N) diturunkan dari besaran pokok massa, panjang dan waktu. Volume (meter kubik) diturunkan dari besaran pokok panjang, dan lain-lain. Besaran turunan mempunyai ciri khusus antara lain : diperoleh dari pengukuran langsung dan tidak langsung, mempunyai satuan lebih dari satu dan diturunkan dari besaran pokok.


DIMENSI

Dimensi menyatakan sifat fisis dari suatu besaran . Atau dengan kata lain dimensi merupakan simbul dari besaran pokok, seperti terlihat dalam tabel 1. Dimensi dapat dipakai untuk mengecek rumus – rumus fisika. Rumus fisika yang benar harus mempunyai dimensi yang sama pada kedua ruas .

Didalam suatu pengukuran ada dua kemungkinan yang akan terjadi yaitu mendapatkan angka yang terlalu kecil atau angka yang terlalu besar jika dipakai satuan diatas. Untuk menyederhanakan permasalahan tersebut maka dalam pertemuan pada tahun 1960-1975 komite international di atas menetapkan awalan pada satuan-satuan tersebut.

Dimensi Besaran
Dimensi besaran diwakili dengan simbol, misalnya M, L, T yang mewakili massa (mass), panjang (length) dan waktu (time). Ada dua macam dimensi yaitu Dimensi Primer dan Dimensi Sekunder. Dimensi Primer meliputi M (untuk satuan massa), L (untuk satuan panjang) dan T (untuk satuan waktu). Dimensi Sekunder adalah dimensi dari semua Besaran Turunan yang dinyatakan dalam Dimensi Primer. Contoh : Dimensi Gaya : M L T-2 atau dimensi Percepatan : L T-2.

Catatan :
Semua besaran fisis dalam mekanika dapat dinyatakan dengan tiga besaran pokok (Dimensi Primer) yaitu panjang, massa dan waktu. Sebagaimana terdapat Satuan Besaran Turunan yang diturunkan dari Satuan Besaran Pokok, demikian juga terdapatDimensi Primer dan Dimensi Sekunder yang diturunkan dari Dimensi Primer.
Manfaat Dimensi dalam Fisika antara lain :
  1. dapat digunakan untuk membuktikan dua besaran sama atau tidak. Dua besaran sama jika keduanya memiliki dimensi yang sama atau keduanya termasuk besaran vektor atau scalar
  2. dapat digunakan untuk menentukan persamaan yang pasti salah atau mungkin benar
  3. dapat digunakan untuk menurunkan persamaan suatu besaran fisis jika kesebandingan besaran fisis tersebut dengan besaran-besaran fisis lainnya diketahui.



Satuan dan dimensi suatu variabel fisika adalah dua hal berbeda. Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu (contohnya, besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer), namun dimensi besaran panjang hanya satu, yaitu L. Dua satuan yang berbeda dapat dikonversikan satu sama lain (contohnya: 1 m = 39,37 in; angka 39,37 ini disebut sebagai faktor konversi), sementara tidak ada faktor konversi antarlambang dimensi.


Sifat-sifat, Cabang-cabang, dan Perubahan Fisika  

Posted by: Unknown



Cabang-cabang ilmu fisika

Mekanika adalah satu cabang fisika yang mempelajari tentang gerak.Mekanika klasik terbagi atas 2 bagian yakni Kinematika danDinamika.

·         kinematika membahas bagaimana suatu objek yang bergerak tanpa Menyelidiki sebab-sebab apa yang menyebabkan suatu objek bergerak. 
·         dinamika mempelajari bagaimana suatu objek yang bergerak dengan menyelidiki penyebab.
Mekanika kuantum adalah cabang dasar fisika yang menggantikan mekanika klasik pada tataran atom dan subatom
Mekanika fluida
 adalah cabang ilmu fisika yang mempelajari fluida (yang dapat berupa cairan dan gas)

Yang berkaitan dengan listrik dan magnet :

·         Elektronika adalah ilmu yang mempelajari alat listrik arus lemah yang dioperasikan dengan cara mengontrol aliran elektron atau partikel bermuatan listrik dalam suatu alat seperti komputer, peralatan elektronik, termokopel, semikonduktor, dan lain sebagainya.
·         Teknik Elektro atau Teknik listrik (bahasa Inggris: electrical engineering) adalah salah satu bidang ilmu teknik mengenai aplikasi listrik untuk memenuhi kebutuhan masyarakat.
·         Elektrostatis adalah ilmu yang mempelajari listrik statis
·         Elektrodinamis adalah ilmu yang mempelajari listrik dinamis
·         Bioelektromagnetik adaIah disiplin ilmu yang mempelajari fenomena listrik, magnetik dan elektromagnetik yang muncul pada jaringan makhluk bidup. 
Termodinamika adalah kajian tentang energi atau panas yang berpindah
Fisika inti
 adalah ilmu fisika yang mengkaji atom / bagian-bagian atom
Fisika Gelombang
 adalah cabang ilmu fisika yang mempelajari tentang gelombang
Fisika Optik (Geometri)
 adalah ilmu fisika yang mempelajari tentang cahaya.
Kosmografi/astronomi
 adalah ilmu mempelajari tentang perbintangan dan benda- benda angkasa.
Fisika Kedokteran (Fisika Medis)
 membahas bagaimana penggunaan ilmu fisika dalam bidang kedokteran (medis), di antaranya:

·         Biomekanika meliputi gaya dan hukum fluida dalam tubuh 
·         Bioakuistik (bunyi dan efeknya pada sel hidup/ manusia) 
·         Biooptik (mata dan penggunaan alat-alat optik) 
·         Biolistrik (sistem listrik pada sel hidup terutama pada jantung manusia)
Fisika radiasi adalah ilmu fisika yang mempelajari setiap proses di mana energi bergerak melalui media atau melalui ruang, dan akhirnya diserap oleh benda lain.
Fisika Lingkungan
 adalah Ilmu yang mempelajari kaitan fenomena fisika dengan lingkungan. Beberapa di antaranya antara lain :

·         Fisika Tanah dalam/Bumi
·         Fisika Tanah Permukaan
·         Fisika udara 
·         Hidrologi
·         Fisika gempa (seismografi fisik)
·         Fisika laut (oseanografi fisik)
·         Meteorologi 
·         Fisika awan
·         Fisika Atmosfer
Geofisika adalah perpaduan antara ilmu fisika, geografi, kimia dan matematika. Dari segi Fisika yang dipelajari adalah:


·         Ilmu Gempa atau Seismologi yang mempelajari tentang gempa 
·         Magnet bumi 
·         Gravitasi termasuk pasang surut dan anomali gravitasi bumi 
·         Geo-Elektro (aspek listrik bumi), dll

Selain yang diuraikan di atas, seiring perkembangan zaman, ilmu fisika telah menjadi bagian dari segi kehidupan, misalnya

·         Ekonomifisika yang merupakan aplikasi fisika dalam bidang ekonomi 
·         Fisika Komputasi adalah solusi persamaan-persamaan Fisika- Matematik dengan menggunakan , dan lain- lain yang mengakibatkan fisika itu selalu ada dalam berbagai aspek. 

Sifat-sifat fisika dan kimia

Sifat Fisika
Sifat yang tidak mengubah sifat kimia suatu materi. Karakteristik fisika bau, kekerasan, titik didih, wujud materi.
Sifat Kimia
Sifat yang mengubah sifat kimia suatu materi. Menerangkan bagaimana suatu materi bereaksi dengan materi yang lain membentuk suatu materi baru.
Ciri-ciri yang mengindikasikan adanya perubahan kimia :


  •  Perubahan warna
  •  Perubahan bau
  • Pembentukan gas
  • Timbulnya cahaya
  • Pembentukan endapan baru
  • Perubahan pH.


Perubahan Fisika dan Kimia

Perubahan Fisika 
Suatu materi mengalami perubahan fisika, adalah perubahan zat yang bersifat sementara, seperti perubahan wujud, bentuk atau ukuran. Perubahan ini tidak menghasilkan zat baru.
Jika kita memanaskan es, maka es tersebut akan berubah menjadi air, selanjutnya jika kita panaskan terus maka air akan berubah menjadi uap air.
Peristiwa ini hanya menunjukan perubahan wujud dimana es, adalah air yang berbentuk padat, dan air yang berbentuk cair, dan uap air adalah air yang berbentuk gas. Tampak bahwa zat masih tetap air. Berbagai macam perubahan wujud adalah contoh perubahan fisika. Beberapa contoh di bawah ini, adalah perubahan wujud yang mudah kita amati.
Proses membeku, perubahan dari zat cair menjadi zat padat karena terjadi penurunan suhu, membuat es dan membuat agar-agar atau jelly adalah proses yang sering dilakukan oleh ibu kita.
Penyubliman adalah peristiwa perubahan zat padat berubah menjadi gas. Dalam kehidupan sehari-hari  mudah kita jumpai, misalnya kapur barus yang menyublim menjadi gas berbau wangi. Menghablur merupakan peristiwa perubahan gas menjadi padatan, peristiwa ini sering disebut juga dengan pengkristalan. Proses di laboratorium dapat dilakukan untuk membuat kristal amonium sulfat yang berasal dari gas amonia dan belerang dioksida.
Perubahan wujud yang lain adalah menguap, mencair dan mengembun. Peristiwa ini dapat diamati pada peristiwa hujan. Peristiwa ini diawali dengan penguapan air ke udara,  selanjutnya mencair kembali dan kembali ke permukaan bumi  (Gambar 1.6).

Perubahan bentuk juga termasuk dalam perubahan fisika, misalnya gandum yang digiling menjadi tepung terigu. benang dipintal menjadi kain dan batang pohon dipotong-potong menjad kayu balok, papan dan triplek.

Perubahan Kimia 
Perubahan kimia merupakan yang bersifat kekal dengan menghasilkan zat baru. Perubahan kimia disebut juga reaksi kimia. Untuk mempermudah, dapat kita lakukan percobaan sederhana.
Batang kayu kita ambil dan dibakar, Batang kayu tersebut berubah menjadi abu, asap dan disertai keluarnya panas. Abu, asap dan panas yang keluar tidak berubah kembali menjadi batang kayu. Perhatikan Gambar 1.7.

Perubahan yang terjadi kekal dan menjadi ciri perubahan kimia, dengan kata lain, zat sebelum bereaksi berbeda dengan zat sesudah bereaksi.
Beberapa contoh lain adalah :
  1. Pembakaran bahan bakar, bensin atau solar menghasilkan zat cair dan asap serta energi yang dapat menggerakkan kendaraan bermotor.
  2. Proses fotosiontesa pada tumbuhan yang memiliki zat hijau daun, mengubah air, gas karbon dioksida dan bantuan cahaya matahari dapat diubah menjadi makanan atau karbohidrat,
  3. Pemanasan batu kapur menghasil kapur tohor dan gas karbondioksida.



Energi  

Posted by: Unknown



Energi
Ditinjau dari perspektif fsika, setiap sistem fisik mengandung (secara alternatif, menyimpan ) sejumlah energi; berapa tepatnya ditentukan dengan mengambil jumlah dari sejumlah persamaan khusus, masing-masing didesain untuk mengukur energi yang disimpan secara khusus. Secara umum, adanya energi diketahui oleh pengamat setiap ada pergantian sifat objek atau sistem. Tidak ada cara seragam untuk memperlihatkan energi.

Macam-macam Energi 

Energi kinetik

Energi kinetik adalah bagian energi yang berhubungan dengan gerakan suatu benda.

Persamaan di atas menyatakan bahwa energi kinetik (Ek) sama dengan integral dari dot product kecepatan (v) sebuah benda dan infinitesimal momentum benda (p)


Energi potensial

Berlawanan dengan energy kinetik, yang adalah energi dari sebuah sistem dikarenakan gerakannya, atau gerakan internal dari partikelnya, energy potensial dari sebuah sistem adalah energi yang dihubungkan dengan konfigurasi ruang dari komponen-komponennya dan interaksi mereka satu sama lain. Jumlah partikel yang mengeluarkan gaya satu sama lain secara otomatis membentuk sebuah sistem dengan energi potensial. Gaya-gaya tersebut, contohnya, dapat timbul dari interaksi elektrostatik (hokum Coloumb), atau gravitasi.

Energi internal

Energi internal adalah energy kinetik dihubungkan dengan gerakan molekul-molekul, dan energy potensial yang dihubungkan dengan getaran rotasi dan energi listrik dari atom-atom di dalam molekul. Energi internal seperti energi adalah sebuah fungsi keadaan yang dapat dihitung dalam sebuah sistem.

 

 http://id.wikipedia.org/wiki/Energi

Pengenalan Unsur dan Sistem Periodik  

Posted by: Unknown

UNSUR


Unsur adalah zat murni yang dapat diuraikan lagi menjadi zat lain yang lebih sederhana dengan reaksi kimia biasa. Penulisan lambang unsur mengikuti aturan sebagai berikut:
1. Lambang unsur diambil dari singkatan nama unsur. Beberapa lambang unsur berasal dari bahasa Latin atau Yunani nama unsur tersebut. Misalnya Fe dari kata ferrum (bahasa latin) sebagai lambang unsur besi.
2.     Lambang unsur ditulis dengan satu huruf kapital.
3.  Untuk Unsur yang dilambangkan dengan lebih dengan satu huruf, huruf pertama lambang ditulis dengan huruf kapital dan huruf kedua/ketiga ditulis dengan huruf kecil.
4.    Unsur-unsur yang memiliki nama dengan huruf pertama sama maka huruf pertama lambang unsur diambil dari huruf pertama nama unsur dan huruf kedua diambil dari huruf lain yang terdapat pada nama unsur tersebut. Misalnya, Rauntuk radium dan Rn untuk radon.
Pada suhu kamar (25 C) unsur dapat berwujud Padat, Cair,dan Gas, secara umum unsur terbagi menjadi dua kelompok yaitu:
  • Unsur Logam: umumnya unsur logam diberi nama akhiran ium. Umumnya logam ini memiliki titik didih tinggi, mengilap, dapat dibengkokan  , dan dapt menghantarkan panas atau arus listrik
  • Unsur Non Logam: umumnya memiliki titik didih rendah, tidak mengkilap,kadang-kadang rapuh tak dapat dibengkokkan dan sukar menghantarkan panas atau arus listrik.



Senyawa adalah zat yang terbentuk dari penggabungan unsur-unsur dengan pembagian tertentu. Senyawa dihasilkan dari reaksi kimia antara dua unsur atau lebih melalui reaksi pembentukan. Misalnya, karat besi (hematit) berupa Fe2O3 dihasilkan oleh reaksi besi (Fe) dengan oksigen (O). Senyawa dapat diuraikan menjadi unsur-unsur pembentuknya melalui reaksi penguraian.
Senyawa mempunyai sifat yang berbeda dengan unsur-unsur pembentuknya. Senyawa hanya dapt diuraikan menjadi unsur-unsur pembentuknya melalui reaksi kimia. Pada kondisi yang sama, senyawa dapat memiliki wujud berbeda dengan unsur-unsur pembentuknya. Sifat fisika dan kimia senyawa berbeda dengan unsur-unsur pembentuknya. Misalnya reaksi antara gas hidrogen dan gas oksigen membentuk senyawa air yang berwujud cair.

SISTEM PERIODIK

MACAM-MACAM SISTEM PERIODIK
1.
TRIADE DOBEREINER DAN HUKUM OKTAF NEWLANDS
TRIADE DOBEREINER
Dobereiner menemukan adanya beberapa kelompok tiga unsur yang memiliki kemiripan sifat, yang ada hubungannya dengan massa atom.

Contoh kelompok-kelompok triade:
- Cl, Br dan I
- Ca, Sr dan Ba
- S, Se dan Te
HUKUM OKTAF NEWLANDS
Apabila unsur disusun berdasarkan kenaikan massa atom, maka unsur kesembilan mempunyai sifat-sifat yang mirip dengan unsur pertama, unsur kesepuluh mirip dengan unsur kedua dan seterusnya. Karena setelah unsur kedelapan sifat-sifatnya selalu terulang, maka dinamakan hukum Oktaf.
                                                                                                  (+8) 
Contoh: Li (nomor atom 3) akan mirip sifatnya dengan Na (nomor atom 11) 3   11


2.
SISTEM PERIODIK MENDELEYEV
-
Disusun berdasarkan massa atomnya dengan tidak mengabaikan sifat-sifat unsurnya.
-
Lahirlah hukum periodik unsur yang menyatakan bahwa apabila unsur disusun menurut massa atomnya, maka unsur itu akan menunjukkan sifat-sifat yang berulang secara periodik.
-
Beberapa keunggulan sistem periodik Mendeleyev, antara lain:
-
Ada tempat bagi unsur transisi.
-
Terdapat tempat-tempat kosong yang diramalkan akan diisi dengan unsur yang belum ditemukan pada waktu itu.
-
Kekurangan sistem periodik ini:
-
Adanya empat pasal anomali, yaitu penyimpangan terhadap hukum perioditas yang disusun berdasarkan kenaikan massa atomnya. Keempat anomali itu adalah: Ar dengan K, Te dengan I, Co dengan Ni dan Th dengan Pa.
3.
SISTEM PERIODIK BENTUK PANJANG
Sistem ini merupakan penyempurnaan dari gagasan Mendeleyev, disusun berdasarkan nomor atomnya.
Sistem ini terdiri dari dua deret, deret horisontal disebut periodik dan deret vertikal disebut golongan.
4.
SISTEM PERIODIK DAN HUBUNGANNYA DENGAN KONFIGURASI ELEKTRON
A.
HUBUNGAN ANTARA PERIODA DENGAN KONFIGURASI ELEKTRON

Dalam sistem periodik, perioda menunjukkan banyaknya kulit yang telah terisi elektron di dalam suatu atom.
Sehingga sesuai dengan banyaknya kulit yaitu K, L, M, N, O, P, Q maka sistem periodik mempunyai 7 perioda.
B.
HUBUNGAN ANTARA GOLONGAN DENGAN KONFIGURASI ELEKTRON
Unsur yang terletak pada satu golongan mempunyai sifat-sifat kimia yang mirip (hampir sama).
Unsur-unsur golongan A disebut golongan utama, sedangkan unsur-unsur golongan B disebut unsur transisi (peralihan), semua unsur transisi diberi simbol B kecuali untuk triade besi, paladium dan platina disebut "golongan VIII''.
- LAMBANG UNSUR-UNSUR GOLONGAN A
Lambang Golongan
Nama Golongan
Konfigurasi Elektron Orbital Terluar
I - A
Alkali
ns1
II - A
Alkali tanah
ns2
III - A
Boron
ns2 - np1
IV - A
Karbon - Silikon
ns2 - np2
V - A
Nitogen - Posphor
ns2 - np3
VI - A
Oksigen
ns2 - np4
VII - A
Halogen
ns2 - np5
VIII - A
Gas mulia
ns2 - np6
- LAMBANG UNSUR-UNSUR GOLONGAN B
Konfigurasi Elektron
Lambang Golongan
(n - 1) d1 ns2
III - B
(n - 1) d2 ns2
IV - B
(n - 1) d3 ns2
V - B
(n - 1) d4 ns2
VI - B
(n - 1) d5 ns2
VII - B
(n - 1) d6-8ns2
VIII
(n - 1) d9 ns2
I - B
(n - 1) d10 ns2
II - B
- GOLONGAN LANTANIDA DAN AKTINIDA, DIBERI LAMBANG
nS2 (n-2)f1-14

Jika :
n = 6 adalah lantanida
n = 7 adalah aktinida
C.
CARA PENENTUAN PERIODA DAN GOLONGAN SUATU UNSUR
1.
Unsur dengan nomor atom 11, konfigurasinya : 1s2 2s2 2p63s1

- n = 3, berarti periode 3 (kulit M).
- elektron valensi (terluar) 3s sebanyak 1 elektron, berarti termasuk golongan IA.

2.
Unsur Ga dengan nomor atom 31, konfigurasinya : 1s2 2s22p6 3s2 3p6 4s2 3d10 4p1

- n = 4, berarti perioda 4 (kulit N).
- elektronvalensi 4s2 4p1, berarti golongan IIIA.

3. 
Unsur Sc dengan nomor atom 21, konfigurasinya : 1s2 2s22p6 3s2 3p6 4s2 3d1

- n = 4, berarti perioda 4 (kulit N).
- 3d1 4s2 berarti golongan IIIB.

4.
Unsur Fe dengan nomor atom 26, konfigurasinya : 1s2 2s22p6 3s2 3p6 4s2 3d10

- n = 4, berarti perioda 4 (kulit N).
- 3d6 4s2 , berarti golongan VIII.


D.
BEBERAPA SIFAT PERIODIK UNSUR-UNSUR
1.
Jari jari atom adalah jarak dari inti atom ke lintasan elektron terluar.
-
Dalam satu perioda, dari kiri ke kanan jari jari atom berkurang.
-
Dalam satu golongan, dari atas ke bawah jari-jari atom bertambah.
-
Jari-jari atom netral lebih besar daripada jari-jari ion positifnya tetapi lebih kecil dari jari-jari ion negatifnya.

Contoh:
jari-jari atom Cl < jari-jari ion Cl-
jari-jari atom Ba > jari-jari ion Ba2+

2.
Potensial ionisasi adalah energi yang diperlukan untuk melepaskan elektron yang paling lemah/luar dari atom suatu unsur atau ion dalam keadaan gas.
Dalam satu perioda, dari kiri ke kanan potensial ionisasi bertambah.
-
Dalam satu golongan, dari atas ke bawah potensial ionisasi berkurang.

3.
Affinitas elektron adalah besarnya energi yang dibebaskan pada saat atom suatu unsur dalam keadaan gas menerima elektron.
-
Dalam satu perioda, dari kiri ke kanan affinitas elektron bertambah.
Dalam satu golongan, dari atas ke bawah affinitas elektron berkurang.

4. 
Keelektronegatifan adalah kemampuan atom suatu unsur untuk menarik elektron ke arah intinya dan digunakan bersama.




KLASIFIKASI

Golongan

Kolom dalam tabel periodik disebut golongan. Ada 18 golongan dalam tabel periodik baku. Unsur-unsur yang segolongan mempunyai konfigurasi elektron valensi yang mirip, sehingga mempunyai sifat yang mirip pula. Ada tiga sistem pemberian nomor golongan. Sistem pertama memakai angka Arab dan dua sistem lainnya memakai angka Romawi. Nama dengan angka Romawi adalah nama golongan yang asli tradisional. Nama dengan angka Arab adalah sistem tatanama baru yang disarankan oleh International Union of Pure and Applied Chemistry (IUPAC). Sistem penamaan tersebut dikembangkan untuk menggantikan kedua sistem lama yang menggunakan angka Romawi karena kedua sistem tersebut membingungkan, menggunakan satu nama untuk beberapa hal yang berbeda.
Golongan bisa dianggap sebagai cara yang paling penting dari mengklasifikasi unsur. Pada beberapa golongan, unsur-unsurnya ada yang sangat mirip sifatnya dan memiliki kecenderungan sifat yang jelas jika ditelusuri menurun di dalam kolom. Golongan-golongan ini sering diberi nama umum (tak sistematis) sebagai contoh: logam alkali, logam alkali tanah, halogen, khalkogen, dan gas mulia. Beberapa golongan lainnya dalam tabel tidak menampilkan sebanyak persamaan maupun kecenderungan sifat secara vertikal (sebagai contoh Kelompok 14 dan 15), golongan ini tidak memiliki nama umum.
Periode
Baris dalam tabel periodik disebut periode. Walaupun golongan adalah cara yang paling umum untuk mengklasifikasi unsur, ada beberapa bagian di tabel unsur yang kecenderungan sifatnya secara horisontal dan kesamaan sifatnya lebih penting dan mencolok daripada kecenderungan vertikal. Fenomena ini terjadi di blok-d (atau "logam transisi"), dan terutama blok-f, dimana lantinida dan aktinida menunjukan sifat berurutan yang sangat mencolok.

Tabel Sistem Periodik